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Two growth modes of graphitic carbon nanofibers with herring-bone structure
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A simple mathematical model of the carbon nanofiber catalytic growth process is presented. Two major types
of the fiber-catalyst interface shapes have been identified and described having qualitatively different structure
in the center of a nanofiber. Presently, we discuss that the appearance of the irregular structure in the nanofiber
central area is a result of curved-interface-growth kinematics. We suggest the method to determine the phe-
nomenological parameters of the developed model from experimental data.
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I. INTRODUCTION

Catalytic synthesis of carbon nanofibers (CNFs) has been
studied since the 1950s.!-® From being an undesirable by-
product, carbon nanofibers evolved to hold potential for a
variety of applications such as cathodes for electron field
emission sources,” scanning probe tips,'®!! gene delivery
media,'> membranes,'® and electrochemical sensors.'* In par-
ticular, the expansion of possibilities for carbon nanofiber
use can be attributed to the development of better control of
their synthesis in a plasma enhanced chemical vapor deposi-
tion (PECVD) process.!>~'7 While now the geometry of the
nanofibers can be controlled with a higher degree of preci-
sion, the mechanisms that determine the internal crystal
structure remain poorly understood.

In many cases, nanofibers structures consist of stacked
cones of graphene sheets [Fig. 1(a)]. This is in contrast to
carbon nanotubes (CNT), which consist of a single (or finite
number) of graphene sheets rolled into perfect cylinders.'®
This type of structure of carbon nanofibers is usually labeled
a herring-bone structure as its transmission electron micros-
copy (TEM) images resemble a fish skeleton. In the central
region of these nanofibers, the regular structure of graphene
layers is disrupted and spatial fluctuations are present in the
carbon distribution (carbon bridges), including the occur-
rence of amorphous carbon regions and cavities. Sometimes
the central region of the nanofiber is filled by the catalyst
material.

In this work, we discuss the two types of herring-bone
structures in catalytic CNF growth. In one case, a central
orifice or cavity is separated from the stack of approximately
conical surfaces by a region in which graphene layers are
nearly parallel to the nanofiber growth direction [Fig. 1(b)].
Such a boundary region is suggestive of the carbon nanotube
structure. In the second case, the similar transient region is
absent and graphite layers terminate internally against the
central nanofiber orifice [Fig. 1(c)]. Experimentally, we
know that this central region may be occupied by amorphous
carbon, metal catalyst, or remain unfilled. Within the phe-
nomenological model developed here, the occurrence of two
modes of herring-bone structure is the result of mutual
nanofiber growth properties at curved graphite layers. The
formal growth model considered here is characterized by
phenomenological parameters that can be determined from
experimental data.
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II. GROWTH OF GRAPHITE FLAT SLAB

Our basic assumption is that the growth rate of graphitic
material depends on its crystallographic orientation.!>-?
There are two different growth velocities V,, and V,, normal
to the graphene layer plane and in-plane, respectively. (Typi-
cally, V,>V,.) This growth anisotropy for CNF is well es-
tablished by experimental evidence, and can be observed in
recent in situ TEM images of CNF growth.?! CNF growth
occurs at the interface between the metal catalyst and the
stacked graphene planes. In particular, in these recent TEM
measurements, monoatomic steps are present at the catalyst
surface and a graphene sheet terminates at each of these
steps. Step-edge diffusion, leading to the in-plane growth of
individual graphene layers, appears to occur at a rate greater
than the spontaneous generation of new step edges at the
interface, leading to the nucleation of new graphene layers.
Moreover, the shape of the nanofiber is driven and in turn
drives the shape of the catalyst particle at the interface during
the growth process.?!

FIG. 1. Schematic herring-bone nanofiber structure: (a) Stack of
graphene cones. (b) Nanofiber with inner cylindrical boundary
within nanofiber creating a central orifice with zero tilt angle for the
growth interface at this inner boundary (shown as a section along
nanofiber axis). (c) The growth interface makes a finite tilt angle
with the inner nanofiber boundary. The 2D cross sections shown in
(b) and (c) have an orifice in the center of the nanofiber. (b) and (c)
differ in the angle formed by the graphene sheet and the internal
boundary of this orifice: the structure depicted in (b) has a smooth
transition from the graphene sheet to the inner boundary; the struc-
ture depicted in (c) has an abrupt, nonzero angle of the graphene
sheet and the inner boundary.
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FIG. 2. (Color online) Anisotropic growth of a graphite slab
constrained between two boundaries. The direction of motion of the
corner point C is determined by the relation of the projection of

normal V,, and tangential V, growth rates onto the coordinate axis.

For purposes of illustration, let us also assume that growth
of a slab of graphite occurs in space limited by two bounding
planes and the angle between these planes and the plane
graphene layers is O (Fig. 2). The assumption of bounded
growth is motivated by the experimental observation that the
size of the catalytic particle limits the size, i.e., diameter, of
the CNF. If the projection of the in-plane growth velocity V;
on the direction perpendicular to the bounding plane (i.e., the
x direction in Fig. 2) is greater than the projection of the
normal growth velocity V,, on the same direction, i.e.,

V,sin 9>V, cos ¥, (1)

then the graphene sheet edges will meet the bounding planes
after finite time and growth will proceed only by stacking
new graphene layers. The growth front will coincide with the
plane of the graphene sheet and the growth rate along the Z
axis will be V,/sin 9. That is, the growth rate of the CNF
will depend on V,, and not on V,. If the in-plane growth of
the graphene layer toward the boundary is slower than the
normal growth velocity projected toward the boundary,

V, cos 0>V, sin 9, (2)

then the growth will proceed only due to (fast) deposition of
carbon on the graphene edges, rather than the (slow) growth
of the graphene layers. Finally, in the rare case when the two
growth velocities projected on the x direction are equal,
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V, cos 9=V, sin 94, the growth front shape will be preserved
in time. Thus the corner separating two surfaces—graphene
sheet and the edges—shown in Fig. 2 will be propagated
without a change. Extending the discussion from the flat slab
of graphite shown in Fig. 2 to the curved, cylindrical sur-
faces, the former regime can be related to the growth of CNF
and the later (9<V,/V,<1) to CNT growth. In this present
work, we are interested in the former case of CNF growth in
which the vertical growth of the fiber depends on V,, but not
onV,.

III. GROWTH RATES OF CURVED GRAPHITE
In the case of curved graphite, we need to introduce the
corrections to the normal growth rate V, o of a flat surface

that can be deduced from symmetry considerations and the
surface curvature (see, for example Ref. 22):

Vn(f)ZVn,O_Fl E Km_FZE K;zn

m=1,2 m=1,2

)2 ()
= Voot == - LR, +i] . (3
( "0 2F2 m=21,2 2r2 e Ri ()

Here «,, and R,, are two curvatures and two radii of curva-
ture of a two-dimensional surface (i.e., graphene sheet) [ k,,

:(Rmr'[)/an] with indices m=1 or m=2. It is assumed that
the vector radii point from the center of curvature toward the
surface, i.e., curvatures of the growth front are negative for
concave and positive for convex surfaces. The signs in Eq.
(3) are chosen so that for positive values of the phenomeno-
logical parameters I';, and T',, and in the absence of addi-
tional limitations, the stable growth front remains flat. (The
values of V, o, I'}, and I', are determined by growth condi-
tions and could vary for different points on the growth front.
Accounting for these variations is beyond the scope of this
work.)

If one considers only terms up to those linear in the cur-
vature in Eq. (3), the growth rate of concave surfaces is
reduced compared to flat surfaces, while the growth rate of
convex surfaces is increased. As a result, an oscillatory
growth front tends to flatten. Considering terms up to those
including the second-power of curvature, growth rates are
reduced irrespective of the sign of the curvature. This effect
is due to the fact that curved graphite layers are energetically
unfavorable compared to flat layers. From the macroscopic
point of view, the additional energy is due to elastic and
plastic deformations.?® From the microscopic standpoint, this
excess energy is associated with bond bending and defects
that appear in curved layers.?

Hence small bending toward concave shape increases
growth rate and toward convex decreases it. Large bending
always slows growth down and, at a certain value of curva-
ture, completely stops it.

For convenience, let us use dimensionless variables, and
express the normal growth rate of a flat surface V, , and the
growth rate of a curved surface V,(7) in units of I‘%/ (4T5),
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4T, 4T,
n = Vn_3 n = Vl‘l _’ 4
v F% Un0 0 I‘% 4)
and length in units of 2I",/I";. Then Eq. (3) can be written as
Up= (vn,O + 2) - E (1 + Km)2~ (5)
m=1,2

The maximum growth rate of
Up.max = Un,0 +2 (6)

is reached at curvatures «;=x,=—1. More generally, the
growth rate is the same for values of «,, located on a circle
with the center at coordinates (—=1,-1) and radius of curva-
ture \e"v,,’max—vn. The curvature of the growth front com-
pletely determines the growth rate. With increasing absolute
value of negative curvature, the growth rate initially in-
creases and then decreases after passing through the maxi-
mum. Increasing absolute value of positive curvature leads to
monotonous decrease of v,,. For given values of v, and «, (or
K,), the value of the second curvature is expressed by the
obvious relation

K2,1 =-1=% \"’Un,max —U,— (1 + K1,2)2' (7)

A. Simple forms of curved graphite

The simplest shapes of curved graphite are represented by
surfaces of constant curvatures, i.e., a sphere or part of a
spherical surface. For spherical catalytic particles, the growth
interface has uniformly constant curvature (x;=k,=k,), and

Ks,i=-1i\/@. (8)

For a growing sphere (x,>0), the curvature decreases as
growth proceeds and the growth rate v, will increase. For a
graphitic sphere with curvature KS’+=—1+\¢"Un’max/ 2 the
growth rate is equal to zero v,=0. This sphere is the critical
seed size for the graphitic phase. For smaller radius, the
sphere collapses. For larger radius, it grows. The spherical,
negative-curvature cavity formed by the other side of the
curved graphite slab (k<<0) has curvature that converges to
Ks_=—1—=\U, max/2. This is a stable state. Larger cavities
decrease in size and smaller cavities increase.

Using Eq. (5), it is also straightforward to analyze a cy-
lindrical surface of graphite, x,=0,

kKe=—1%\v,0+1-v,. 9)

A graphitic rod with critical curvature

Koy = r;1+ =—1+ \“”Un,() +1 (10)

is unstable and the negative curvature cavity with curvature
Keo=—T,_==1=1\v,o+1 (11)

is stable.

In the following we will conduct an analysis of more
complex surface shapes that model real interfaces in carbon
nanofibers.
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B. Steady state growth front

In order to use the formulas presented above for analysis
of the catalytic synthesis of carbon nanofibers, it is necessary
to know the values of the parameters V, o, I';, and I'; at the
interface between the catalyst particle and the nanofiber.
These phenomenological parameters are determined by
many factors that cannot be calculated within the models
presented in this paper. We will limit ourselves to the analy-
sis of a simple model problem. Let us assume that the values
of parameters V,,, I';, and I'; are the same everywhere along
the interface, i.e., we will not take into account nonunifor-
mity of growth conditions due to external processes such as
diffusion, catalyst stresses, etc. As a main control parameter
of the system under investigation, we will consider the total
growth rate of a nanofiber in steady-state conditions V,
=v.I'1/(4T,). The relation of this parameter to the initial
conditions of the problem is not obvious. Therefore, for our
model problem, let us consider the situation of steady-state
growth of a cylindrically symmetric nanofiber along the ver-
tical (i.e., z) direction for the relatively simple situation of
normal interface growth rate depending only on the local
curvature, as in Eq. (5). If the tilt angle of the graphene
sheets is not large (1), the shape of the interface is given by

o [r90)]
YT i o(r) (12)

where r is the radial distance from the axis of symmetry,
O(r) is the local, polar, or tilt angle defined relative to the z
direction, and v,[r, 9(r)] is the local normal interface growth
rate (5). For cylindrical nanofibers, the two curvatures at the
point r at the interface are

1= £ 52220, “

d[cos Ir)]

dr (14)

Ky(r)= %

The signs in Egs. (13) and (14) depend on which side of the
interface carbon is deposited. For geometries considered in
Figs. 1(b) and 1(c) 0<9< /2 and in Eqgs. (13) and (14) the
negative signs should be used. The functional dependence of
the shape or form of the growth interface, Z(r), can be re-
lated to the tilt angle as follows:

dZ_(r) _ cos Hr)

dr  sind(r)’ (15)

For a continuous and smooth surface, cylindrical symme-
try implies that if the surface is present at the center of the
nanofiber, then at r=0 the surface is normal to the growth
direction 9(r=0)=m/2, and «;(0)=k,(0)=«(0). The value
of k(0) is given by Eq. (8) in which v, =v.. Obviously, this
boundary condition can be satisfied only for small values of
the total growth rate (v, <Uv, ya0)-

By substituting Egs. (13) and (14) in Eq. (7), we obtain
two possible equations,
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dcosz‘)_

_ . cos 9\?
=1% \|Vymax— VU, 8in - 1- .
dr ’ ' r

The coupled differential equations (15) and (16) constitute
the formal, mathematical model for the calculation of the
interface form, Z(r). For small r, the solutions (16) that sat-
isfy the boundary condition (8) are

(16)

Uy max — Uz
—_n . 17
: ) (17)

cosﬁz(l F

We note that due to the nonlinearity of the problem, the
superposition principle does not apply and we cannot obtain
a general solution as linear combinations of solutions of the
form (17). However, we can match different solutions within
different regions of the interface. In further analysis, we will
restrict ourselves to only positive values v,=0 that corre-
spond to growth of a nanofiber.

If v.=0, the solutions (17) are valid in a large range of
values of r. The interface in this case is a part of a sphere
with critical value of curvature k.. The interface that corre-
sponds to the use of the minus sign in Eq. (16) is displayed
in the left part of Fig. 3(a), and the plus sign is displayed on
the right side. The “—" solution in this case corresponds to
positive curvature of the interface and the “+” solution to
negative curvature. The interface function Z(r) is obtained by
successively integrating Egs. (16) and (15). An example us-
ing v, o=1,v,=0 is presented in Fig. 3(a).

Increasing the growth rate only weakly affects the shape
of the “+” interface and abruptly decreases the curvature of
the “—" solution. (Notice the change in the interface, dis-
played in Fig. 3(b), when using v,0=1,v,=0.9.) For v,
=0,0, the “=" solution corresponds to a flat interface x;,
=0, and the maximal possible value of the nanofiber radius
F(H:;x(vn’Osz) becomes infinity. The characteristic radius for
the “+” solution remains on the order of K;l_

If v,>v,, then both “—"" and “+” solutions correspond
to interfaces with negative curvature. From Egs. (13) and
(14), both the curvatures of the “— solution approach zero
with increasing r. From the asymptotic »— 2 solution to Eq.
(16), we obtain the asymptotic value of the tilt angle of the
interface with respect to the axis of the fiber

lim, .[sin 9(r)]=v,o/v.. (18)

These conditions correspond to the formation of nanofi-
bers with herringbone structure. When v, reaches its maxi-
MUM U, =V, nax=Vpn0+2, the square root in the boundary
condition (17) becomes zero. The curvatures of both “+”
and “—” interfaces at r=0 are the same and equal to —1,
[e.g., see Fig. 3(c)]. Increasing the growth rate further, i.e.,
U, >V, max> Tequires violating the assumptions of a continu-
ous and smooth surface, as the argument of the cosine func-
tion in Eq. (17) becomes imaginary. One way in which the
growth rate may increase beyond v,, ., is for continuity to
be sacrificed and a void or orifice to open at the center of the
fiber. Indeed, it follows from the analysis of Eq. (16) that
sin 9] < U,.max/ U, for all points of the interface. This condi-
tion can be satisfied with a cylindrically symmetric interface
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FIG. 3. (Color online) Evolution of growth interface shape for
“+7 (%)) and “—* (+7)) solution of the coupled equations (15) and
(16): (a) v, 0=1,v,=0; (b) v,0=1,v,=0.9; and (c) v,0=1,v,=3.
The dark region represents the presence of the nanofiber.

and v,>v,, . Only away from the center of the nanofiber,
r>0. Therefore the growth interface should have an inner, as
well as an outer, cylindrical boundary surface, which devel-
ops over time during the growth process. Some features of
this solution can be determined from the following simple
considerations.

Assuming that the second curvature is small («,<<1), we
can omit terms containing «, in Egs. (5), (7), and (16). For
this approximation, the tilt angle and radius of the interface
are connected by the following equation, in which the inter-
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face radius r, is expressed, for present purposes, as a func-
tion of the tilt angle.

cos U

ro(9) = (19)

1+\v,o+1-v.sin 6

We are only interested in positive tilts (0<9<7/2) and
radii (ry>0).

Let us find out how the value of «, influences the inter-
face shape, or equivalently, take into consideration the de-
rivative of the interface tilt angle with respect to the radius
(14). At the internal nanofiber boundary surface, ry,, the
graphene-catalyst interface is terminated by some means.
From the point of view of this analysis, Eq. (16) does not
have real-valued solutions for r<<ry,. But, for r=ry,, such
solutions exist, and can be classified by their behavior at r;,,.
In one class, the growth interface at r=r;, forms a zero tilt
angle with the internal nanofiber boundary [e.g., see, for il-
lustration, Fig. 1(b)], and the growth interface at r=r;, has
zero velocity, i.e.,

FHrin) =0,
1)? dcos O 2
Un(rint)=vn0+2_ l-— —{1- =O;
’ Fint dr r=rig
dcos U
<0. (20)
dr r=r;

nt

In another class of solutions, the square root in Eq. (16) is
equal to zero at the radius r=r;,. In this case, the growth
interface at r=r;,, makes a finite angle with the internal
nanofiber boundary, i.e.,

dcos O

cos
=T e = 0. (21)
1 +\v,0+2-v,sin Oy,

7

Figures 4(a) and 4(b) show examples of the radial depen-
dence of the interface tilt angles 9(r), and Figs. 5(a) and 5(b)
show examples of the interface shapes, each calculated from
Egs. (16), (20), and (21) and for two values of growth rates
v,0=1,v,=3 and v, y=1, v,=4. The dashed line in Figs. 4
and 5 corresponds to the approximate equation (19), for
which the second principle curvature is assumed negligible.
Curves labeled 1, 2, 3, and 4 are constructed for boundary
conditions (21) with sign “+” before square root, and curves
5, 6, and 7 are constructed for boundary condition (21) with
sign “—*. Curves 8, 9, 10, and 11 are constructed for bound-
ary conditions (20). One can see that the second curvature «,
strongly influences the relationship between the radial posi-
tion of the internal nanofiber boundary and the interface tilt
angle near the internal boundary. In this region, interface
solutions described by the boundary conditions (20) form a
series of solutions falling below the approximate interface
(19). On the contrary, interfaces described by conditions (21)
fall above the approximate interface (19) and are character-
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0.0 :
(b) 0 ¥ 1 2 3 7

FIG. 4. Radial dependence of interface tilt angle, ¥(r), for a
given, asymptotic lim, . sin 9(r)=v, /v, tilt-angle dependence:
(@) v,=v, p+2=3 and (b) v,=4,v, o=1. Curves 1-4 are constructed
for boundary conditions (21) with sign “+ before square root, and
curves 5-7 are constructed for boundary condition (21) with sign
“—.“ Curves 811 are constructed for boundary conditions (20).
The dashed line corresponds to the approximate equation (19).
From the experimental observation of the two special interface
forms 1 and 8 described within the text and depicted with bold
lines, one can obtain values of the major phenomenological param-
eters of our kinetic model.

ized by large values of the angle 9 near the inner nanofiber
boundary. The role of «, is more significant at small values
of the nanofiber growth rate just beyond the threshold for the
appearance of the central cavity. The disappearance of the
orifice at lower growth rates, i.e., 0 <v,<wv, o+2 is possible
only for boundary conditions (21) and «,# 0. One can see
that interface solutions corresponding to boundary conditions
(21) have spherical geometry of the growth interface, i.e., the
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Z(r) ' ' ‘ ' ' '

-2

(@)
Z(r)

-2

® o F 1 2 R

FIG. 5. The shape of the nanofiber growth interface as a func-
tion of the radial distance, for a given asymptotic lim,_.. sin 9(r)
=v, /v, tilt-angle dependence: (a) v,=v,(+2=3 and (b) v,
=4,v, o=1. The in-figure notation is identical to that used in Fig. 4.

product of the two principle curvatures is positive. For
boundary conditions (20), the interface geometry is spherical
at the outer regions of the nanofiber, but in the inner region it
is hyperbolic.® Examples of structures corresponding to Eq.
(20) can be found as TEM images given in Ref. 24, and in
Fig. 2 and in situ TEM “movie” N1 from the supplementary
information in Ref. 21 Interfaces satisfying (21) may be ob-
served, for example, in the TEM images published in Ref. 25
and in the second in situ TEM “movie” N2 from supplemen-
tary information published with Ref. 21.

The nonzero value of «, allows for the variation of the
central orifice diameter over a wide range of values. From
Fig. 4, one can see that for the high value of growth rate the
different interfaces have practically the same shapes and dif-
fer only in the central orifice diameter.

From a large number of possible interfaces, we have se-
lected two interfaces that correspond to special conditions.
One interface with special significance corresponds
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to boundary conditions (21) and is that with maximum
possible tilt angle at the inner boundary (ri,)= D
=arcsin(v,, may/v.) [Eq. (12)]. The bold line with label 1 cor-
responds to this special interface in Figs. 4 and 5. The second
interface of special significance is that which possesses the
minimum value for the radius of the central cavity. This in-
terface is presented by a bold line in Figs. 4 and 5 with label
8, and is identified with the class of boundary conditions
(20). In this case, the radius of the central cavity is equal to
ri=r._ and connected with v, by formula (11). At the in-
ternal nanofiber boundary & (ri,) = k,(ri,) =—1 and the value
of the dimensionless radius of the central orifice is directly
connected with the experimentally determined value of the
tilt angle at the inner boundary:

5= €08 Dpax- (22)

Thus by measuring 9,,,, and the corresponding radius of
the internal orifice (r,L;), one can determine the natural
length unit Ly=21",/T";. After this, the experimental measure-
ment of the size of the central cavity in herring-bone nanofi-
bers r{L, will allow one to estimate the dimensionless rate
U, 0- This rate is connected with the dimensionless nanofiber
growth rate v, by Eq. (18). Then, by measurement of the
interface tilt angle far from the central cavity, one can calcu-
late v,. By comparing v, with the experimental value for the
nanofiber growth rate V.=v_(I't/4T,), one can obtain values
of all phenomenological parameters of this model.

IV. DISCUSSION

The kinematical model developed here describes the ma-
jor, qualitative, and significant features of steady state, cata-
lytic carbon-nanofiber growth. As in any kinematical model,
it does not include a discussion of the forces, processes, or
mechanisms causing this growth. For example, we consid-
ered the growth rate v, as the master parameter determining
the growth front shape. Alternatively, the angle of the conical
interface at large distances, 9(r— ), may be taken as a
master parameter. This angle is directly related with v, and
U0 by Eq. (18). As discussed in Refs. 26-28 the angle
J(r— ) may be connected with the hydrogen-plasma con-
centration as well as with the orientation of the crystalline
metal catalyst. Such rearrangement of reasons and conse-
quences does not affect the major results of the analyses
provided here and the experimental determination of phe-
nomenological model parameters.

The assumption of the spatial uniformity of the growth
conditions and constant values of phenomenological param-
eters along the interface has a much larger influence on the
quantitative agreement of the present calculations with ex-
perimental data. For example, one can imagine that the de-
pendence of the growth rate on the catalytic film thickness,
i.e., due to variation of diffusion distance, leads to the sign
change of the parameter I'; and thus to instability of the flat
growth front.

The availability of experimental information about distri-
butions of values of the phenomenological parameters used
in this work would be very useful for the development of a
more complete process description.
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V. CONCLUSION

In conclusion, we summarize the major results of this
investigation.

(1) The presented kinematic model of the catalytic
carbon-nanofiber growth considers the dependence of the
normal rate of growth (V,) on the surface curvature of the
growth interface. The model allows for the understanding of
how the growth front shape (the interface between the carbon
nanofiber and the catalyst) changes with the normal growth
rate.

(2) There are two types of the interface growth that dras-
tically differ in the angle between the graphene sheet and the
nanofiber axis near the center of the fiber (small radial val-
ues). In one case, at small growth rates, the interface exists in
the nanofiber center (r=0) and is perpendicular to the growth
direction. In the second case, even at small growth rates, an
internal, cylindrical nanofiber boundary exists at ry,, # 0, pro-
ducing a cavity in the nanofiber center. The interface tilt far
from the center is simply related to the ratio of the growth
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rate v, and the characteristic rate v, 5. For large growth rates,
the presence of the central cavity is consistent with both
interface types. This central cavity may be empty, filled by
catalyst, graphite bridges, amorphous carbon, etc., and our
kinematic model does not distinguish among these scenarios.

(3) We have also shown that the central cavity diameter
varies over a wide range of values. Based on the experimen-
tal dependence of the interface angle at the inner boundary
I(ry,) and the central cavity radius ry,, it is possible to de-
termine the major, phenomenological growth parameters of a
herring-bone nanofiber structure.
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