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Abstract—The size and scope of cutting-edge scientific sim-
ulations are growing much faster than the I/O and storage
capabilities of their run-time environments. The growing gap
is exacerbated by exploratory, data—intensive analytics, such as
querying simulation data with multivariate, spatio-temporal con-
straints, which induces heterogeneous access patterns that stress
the performance of the underlying storage system. Previous work
addresses data layout and indexing techniques to improve query
performance for a single access pattern, which is not sufficient for
complex analytics jobs. We present PARLO a parallel run-time
layout optimization framework, to achieve multi-level data layout
optimization for scientific applications at run-time before data is
written to storage. The layout schemes optimize for heterogeneous
access patterns with user-specified priorities. PARLO is inte-
grated with ADIOS, a high-performance parallel I/O middleware
for large-scale HPC applications, to achieve user-transparent,
light-weight layout optimization for scientific datasets. It offers
simple XML-based configuration for users to achieve flexible
layout optimization without the need to modify or recompile
application codes. Experiments show that PARLO improves
performance by 2 to 26 times for queries with heterogeneous
access patterns compared to state-of-the-art scientific database
management systems. Compared to traditional post-processing
approaches, its underlying run-time layout optimization achieves
a 56% savings in processing time and a reduction in storage
overhead of up to 50%. PARLO also exhibits a low run-time
resource requirement, while also limiting the performance impact
on running applications to a reasonable level.

I. INTRODUCTION

Extreme-scale, multivariate, spatio-temporal datasets from
high-fidelity scientific simulations present great challenges for
knowledge discovery largely due to I/O bottlenecks. Optimiza-
tions for storage and I/O systems in HPC have been actively
addressed at multiple levels of the software stack — from par-
allel file systems (PFS) (e.g., GPFS [18], Lustre [6], PVFES [3])
through I/O middleware (e.g., ADIOS [14], HDF5 [7], Parallel
netCDF [13]), to data staging architecture (e.g., DataStager [1],
PreDatA [26]). However, such optimizations have been primar-
ily driven by the need for fast data offloads from the simulation
run-time environment by maximizing write throughput.

In contrast, read performance for exploratory queries and
analytics has not been addressed with the same level of
attention. Whereas previously there was no significant issue in
this area, the growing size and complexity of scientific datasets
are beginning to overwhelm simple approaches, creating an
analysis bottleneck. The root cause is that many analytics

tend to induce highly heterogeneous and hard-to-predict access
patterns over the data, whereas coarse-grained data storage
method can only efficiently serve one such pattern. Developing
new layout optimization (LO) methods for organizing data on
disk is crucial to addressing this rising issue.

Previous work has demonstrated a number of layout opti-
mization techniques, but each for only a particular access pat-
tern. For instance, SciDB [2] and work on space-filling curves
(SFC) [17] focus on spatial LO. Likewise, FastBit [5], [25]
and ISABELA-QA [16] explore value-based LO methods.
However, systems optimized for only a single access pattern
cannot address the mix of access patterns observed in practice.
While simply generating multiple replicas of a dataset, each
with a different LO, may seem a straightforward solution,
it is infeasible under the storage constraints of current HPC
systems, and would also have a substantial, negative impact
on effective simulation I/O write throughput, which is still a
critical issue. Instead, an efficient, holistic LO scheme should
be able to optimize for heterogeneous access patterns while
avoiding such replication.

Another limitation of existing LO techniques is the absence
of a run-time framework capable of applying LO over datasets
at application run time, before they are written to storage.
Instead, most previous work considers only post-processing
methods, which necessarily entail the overhead of reading,
processing, and writing entire datasets. Such an approach is
becoming prohibitively expensive in most cases due to the
ubiquitous I/O bottleneck. Some previous work does address
LO at file system level [20], [23]; however, these methods
require application-level knowledge, and only optimize for
specific access patterns and file systems.

In response to these limitations of existing systems, we
present PARLO, a parallel run-time layout optimization
framework. PARLO extends our previous work, MLOC [10],
to optimize for heterogeneous access patterns on scientific
datasets both through parallel run-time LO and integration
with the ADIOS adaptive I/O middleware. Users may config-
ure PARLO to optimize for different access patterns via the
standard ADIOS XML configuration file without modifying or
recompiling application code. Additionally, we have extended
the ADIOS read APIs to offer a rich query interface, offer-
ing improved query performance under heterogeneous access
patterns by leveraging our LO schemes.
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Fig. 1. An overview of MLOC’s multi-level architecture. The positions of
levels for layout optimization (LO) are flexible.

This paper makes the following contributions:

« We present PARLO, a parallel run-time layout optimiza-
tion framework for queries on large complex scientific
datasets with heterogeneous access patterns.

« PARLO is integrated with ADIOS middleware, and can
be used flexibly and transparently by existing user ap-
plications. In keeping with ADIOS common practice,
PARLO optimization parameters can be tuned via the
XML configuration file without recompilation.

e PARLO adds rich query interfaces to the middleware
read APIs to fully leverage dataset LO to improve query
performance by 2 to 26 times.

« PARLO is designed and implemented as a lightweight
plug-in to minimize run-time performance impact on
large-scale parallel HPC applications. The additional run-
time overhead is between 3% and 30% for both run-time
layout optimization and query index building. Compared
to traditional post-processing approaches, it saves pro-
cessing time by 56% and storage overhead by 50%.

The remainder of this paper is organized as follows: Sec-
tion II introduces important background related to our work.
Section III describes the design and implementation details
of PARLO. Section IV shows experimental evaluation for
PARLO, while Section V gives a broader comparison with
existing related work. Finally, Section VI concludes and sum-
marizes our work.

II. BACKGROUND

A. MLOC: Multi-level Layout Optimization for Compressed
Scientific Datasets

In our previous work, we have presented MLOC, a multi-
level layout framework for compressed, scientific, multi-
variate, spatio-temporal datasets. MLOC provides a flexible
multi-level architecture in which multiple layout optimiza-
tions are composed and ordered according to user-specified
priority to optimize for heterogeneous access patterns. MLOC
also includes a byte-level method for precision-driven multi-
resolution data access, which achieves higher detail preser-

vation than traditional multi-resolution sampling. Data com-
pression techniques can be selectively plugged into MLOC to
reduce storage and I/O overhead. Experiments have shown that
MLOC achieves higher query performance and lower storage
overhead compared to the state-of-the-art techniques [10].

B. I/O Middleware and Run-time Data Transformation

Because handling parallel I/O in an HPC system is a
complex task, many modern scientific applications use pub-
lically available I/O middleware solutions, such as HDF5 [7],
ADIOS [14], and PnetCDF [13], to manage this process.
Such libraries provide stable and portable I/O interfaces, allow
scientists to leverage existing best practices for performing I/0O,
and produce data in a self-describing file format.

Although, these systems deliver efficient I/O performance,
there is sparing support for run-time data transformation
methods, such as is our goal to provide in this paper. HDF5,
for instance, has implemented compression filters for run-time
data compression. However, this mechanism has two main
limitations that prevent us from using it in this work. First, the
filters only support compression-like algorithms that reduce
data size, and do not offer enough flexibility for developers to
achieve more versatile functionality (such as an added index,
or the ability to read only a portion of the transformed data to
answer a query). Second, the filters do not currently work
in parallel write mode, as the compressed buffer sizes are
unpredictable, and thus make it difficult for the middleware
to calculate file write offsets without expensive global syn-
chronization. This is unacceptable for our application, as we
wish to target modern large-scale parallel scientific codes with
our run-time layout optimization, so filters are not an option.

Given these limitations, and the fact that other major I/O
middleware codes (ADIOS and pnetCDF) do not support a
mechanism like filters, we found it necessary to extend an I/O
middleware to support our run-time data transformation. In this
work, we integrate with the ADIOS I/O library; the specifics
are described in Section III-B. Next, we give an overview of
ADIOS, and why it is a good fit as a platform with which to
integrate our work.

C. ADIOS I/O Middleware and BP File Format

ADIOS is an I/O middleware library that aims to provide
an efficient parallel I/O pipeline for large-scale scientific
simulations. Key features include highly scalable reading and
writing; a componentized I/O stack; an extensible, portable,
and metadata-rich binary file format; and delayed consistency
writes to minimize global synchronization.

Several of these features of ADIOS have a direct impact on
integration with PARLO, and so require further explanation.
First, ADIOS’s componentization of the HPC I/O stack ab-
stracts and separates the read and write transport methods from
the core ADIOS “common layer”. This offers a centralized
place for us to intercept the user’s data to optimize its storage
layout. Second, ADIOS uses a configuration XML file, which
contains variable names, groupings, datatypes, and dimensions
(which can be parameterized at run time). We extend this



configuration as we integrate PARLO by allowing the user to
mark individual variables for particular layout optimizations
using a simple new parameter (as exemplified in Figure 4).
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Fig. 2. The structure and ADIOS BP file format.

One more relevant aspect of ADIOS that must be understood
is its current native storage layout, the Binary Packed (BP)
file format. A high-level overview of the layout is given in
Figure 2. The fundamental data storage unit of a BP file is
the Process Group (PG), which contains all of the variable
data written by a single process during a single write phase,
and includes the necessary metadata to describe its contents.
When writing is finished, basic metadata for all PGs is then
collected and appended to the BP file as a footer index (the
Global Index section shown in the figure). This format is
important here because PARLO performs both intra- and
inter-PG optimizations. The former independently and locally
transforms the data produced by each processor, whereas the
latter reorders the PGs themselves in the file to increase
spatial locality. These techniques are addressed in detail in
Section III-C.

III. METHOD

The overall goal of PARLO is to optimize the data layout
for multi-dimensional, spatio-temporal scientific datasets in
order to improve query performance under a range of different
access patterns. PARLO targets several classes of query-driven
access patterns induced by different kinds of analytics jobs: (1)
value-constrained access patterns, generated by value queries.
For example, range queries, histogram building, isosurface
construction, and so on; (2) spatial/region-constrained access
patterns, generated by range/region queries. For example,
multi-dimensional array slicing, subvolume/subplane access,
etc.; (3) value-and-spatial-constrained access patterns, result-
ing from a combination of the previous two access patterns;
and (4) multi-resolution data access patterns, induced by
partial-precision/approximate queries. For example, visualiz-
ing data at a lower value precision to reduce I/O time, using
reduced-precision data to speed up simple analysis, and so
on. More detailed characterizations of these query types can
be found in our previous work [9], [10].

Pursuant to this broad goal, and given the limitations of
current approaches outlined previously, in PARLO we identify
the following specific goals:

o Design and implement a parallel run-time framework to
achieve LO at run time instead of post-processing, saving
computation, I/O and storage resources.

o Integrate the run-time framework with I/O middleware
to achieve user-transparent LO without modification or
recompilation of application codes.

« Reduce run-time overhead LO to minimize the perfor-
mance impact on running applications.

e Provide rich query functions for the middleware read
APIs, and optimize the query processing for heteroge-
neous access patterns.

A. Approach Overview

PARLO achieves multi-level data layout optimization (LO)
by changing the linearization of multi-dimensional scientific
datasets on 1-dimensional storage space. The multi-level ap-
proach combines multiple optimizations to improve the data
locality for heterogeneous query access patterns. Unlike tra-
ditional post-processing approaches, PARLO applies LO at
application run time, before the data is written to storage. By
performing in-memory transformation of user data, PARLO
is able to eliminate the I/O overhead associated with post-
processing.

Figure 3 gives an overview of PARLO as integrated with
ADIOS. The core PARLO code is contained in an external
library outside of ADIOS, with a minimally-intrusive integra-
tion layer within ADIOS that applies PARLO during both
write and read operations. On the write side, the integra-
tion layer intercepts user I/O operations, invokes the main
PARLO code to optimize the buffer layout, and then writes
the transformed buffer using standard ADIOS I/O routines. On
the read side, the integration layer captures the user’s query
constraints, passes the constraints to core PARLO to generate
read requests for the standard ADIOS read routines, and finally
calls PARLO again to process the data from storage to answer
the original query.

It is important to note that, although the core PARLO code
is cleanly separated from the ADIOS integration layer, from
the user’s perspective, PARLO operates entirely within the
ADIOS workflow. This is because the layout optimization is
performed transparently during ADIOS write/read calls. This
design achieves transparency in user experience, as well as
good software engineering modularity.

Within this framework, PARLO applies a flexible, multi-
level layout scheme that combines multiple LO techniques
in hierarchical orders, and thus achieves optimization for
heterogeneous access patterns. PARLO accepts an ordered
list of access pattern requirements, and applies one specific
optimization technique for each requirement as a level in the
hierarchy. The techniques we implement are: (a) chunking
and Hilbert-curve mapping to support queries with spatial
constraints (SC); (b) value-based binning to support queries
with value constraints (VC); and (c) byte-level division to
support precision-based multi-resolution access. In the fol-
lowing sections, we will examine the PARLO design and
implementation in more detail.

B. Run-time Layout Optimization with ADIOS Parallel /O
Middleware

As part of our implementation, we have integrated PARLO
with the ADIOS I/O middleware. The user can activate
PARLO by adding a simple parameter to the ADIOS XML
configuration file, as shown in Figure 4. The value of this pa-
rameter (“transform”) consists of three parts, separated by
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<var name="varl" gwrite="arrayl"
gread="arrayl" path="/var" type="double"
dimensions="1,ndx,ndy,ndz"
transform="PARLO:V-M-S|20|8°3"/>

Fig. 4. ADIOS XML configuration file with PARLO configured.

vertical bars: (1) PARLO:V-M-S specifies the LO techniques
(V-M-S) PARLO will use to perform the transformation, in
descending priority order; (2) 20 indicates the number of
bins used for value binning; and (3) 8"3 specifies the spatial
chunking parameters (in this case, we specify 8 chunks in
each dimension for a 3D dataset). This configuration method
allows the user to enable, disable, or reconfigure PARLO
easily, without the need to modify or recompile the application
code.

In order to further describe our integration, we must first
review the internal structure of ADIOS. ADIOS is divided
into three main layers: the common layer, the read transport
layer, and the write transport layer. The read and write
layers are modular, permitting different implementations to be
swapped via the XML configuration without recompilation.
These layers are both tied to the central common layer via a
set of “transport method hooks” (an API of functions that the
read/write transport developer must implement).

Given this structure, we aim to restrict all code modifica-
tions for PARLO integration to the common layer only. In
this way, we ensure that PARLO will be compatible with all
current and future read and write transport methods (assuming
they are fully conformant to the hook API), and thus will
benefit from future low-level I/O optimizations. We have fully
achieved this goal with respect to the write transport layer,
requiring no modification to write methods whatsoever. The
read layer was more difficult, as it does not propagate the
new PARLO metadata for the common layer, and because
all spatial selection functionality is implemented exclusively
within that layer. Thus, some changes were required, but

An overview of PARLO integrated with ADIOS at both write and read side.
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we have minimized the impact by encapsulating the required
extensions in new hook API functions, which, for the basic
ADIOS “read bp” method, were trivial to implement (as they
simply expose already-available metadata).

We achieve this level of separation by transparently replac-
ing user variables with special one-dimensional byte array
variables as shown in Figure 5. This allows the read and write
layers to operate exactly as before (as if the user had defined
these 1D byte arrays explicitly), but gives our integration code
the flexibility to perform LO at the byte level. The original
metadata for these variables is retained separately, and used
to perform translation between this internal representation and
the user’s variable schema. Whenever data is read or written,
PARLO intercepts the user’s request, translates it to requests
on the corresponding 1D byte array (optimized via our layout
methods), delegates to the read/write layer to service these
translated requests, and finally performs translation back to the
user’s view of the variable before returning. This translation
is kept completely internal to the common layer: the user sees
the variables exactly as they were without PARLO, and the
read/write layers see the variables as 1D byte arrays.

Having presented the integration framework, we now de-
scribe how our layout optimizations are actually applied within
the context of ADIOS. As introduced in Section II-C and
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Figure 2, the ADIOS BP file format consists of multiple
process groups (PGs), each corresponding to the data written
by a single process during a single write operation. Our LO
technique performs both intra- and inter-PG optimization; that
is, PARLO not only optimizes the data layout within a single
PG, but also optimizes the layout of the PGs themselves
within the BP file. These two optimization schemes are
applied selectively based on application write patterns and the
user’s requirements for access pattern optimization in order to
achieve the most efficient LO.

C. Layout Optimization and Query Index Building

1) Multi-level Intra-PG and Inter-PG Data Layout Opti-
mization: PARLO’s intra-PG optimization is based on our
previous work, MLOC [10]. It optimizes for heterogeneous
access patterns by applying one or more of the following LOs
(1) chunking and Hilbert space-filling curve (HSFC) map-
ping, which optimize for spatial-constrained access patterns
by improving spatial locality; (2) value-based binning, which
optimizes for value-constrained access patterns by grouping
data based on values; and (3) byte-level precision-based level
of details (APLoD) [11], which offers a precision-based
multi-resolution data storage and access solution by breaking
value into byte-level components. As shown in Figure 1,
the adjustable LO’s order placement gives user flexibility of
changing optimized data layout according to the priorities of
queries in analytic jobs.

Figure 6 shows four examples of how PARLO optimizes
for heterogeneous access patterns using different priority or-
ders. Taking the V-S-M layout scheme as a specific example,
PARLO optimizes for value-constrained access patterns (V)
at the first level by dividing the whole dataset into multiple
bins. Next, within each bin, data is partitioned into chunks, and
the chunks are stored in HSFC order to optimize for spatial-
constrained access patterns (S). Finally, within each chunk,
the data is further partitioned into multiple APLOD levels to
optimize for multi-resolution access patterns (M). Similarly,
the S-M-V layout scheme optimizes for spatial-constrained
access patterns as first priority, multi-resolution as second

priority, and value-constrained as third priority.

Based on the size of data within a PG, it may be desirable
to apply only some of the LO optimizations. For example, if
the data size within a PG is small (e.g., several MBs), it may
not be necessary to perform chunking to further divide it into
smaller chunks. In this case, the user may wish to only apply
binning and/or APLOD division to the data. PARLO does
support such partial optimization based on data characteristics
and user requirements.

Finally, in the case that spatial access (S) is selected for
first priority optimization, PARLO also supports inter-PG
layout optimization to improve data locality among multiple
PGs. Using global communications to reorganize data among
PGs can be expensive, and is therefore undesirable. For this
reason, PARLO applies communication-free inter-PG LO, in
which each process changes its write offset by via a HSFC
mapping. This requires no inter-PG communication, since each
process only needs to know its own offset to perform this
calculation. Within each PG, finer-grained LO such as binning
and APLOD division can be performed to further optimize for
heterogeneous access patterns.

2) Run-time Layout Optimization: The original user data
buffer for each PG is transformed in memory at run time to
generate the final layout schemes shown in Figure 6, after
which ADIOS writes the data buffer with optimized layout
to storage. The run-time transformation brings up challenges
due to limited run-time resources, including CPU and memory.
Extra CPU cycles are required to transform the data into the
optimized layout, and extra memory space is required to hold
the transformed data. The run-time resource consumption must
be controlled in order not to affect the run-time performance
of running applications. PARLO addresses the challenge
by adopting a lightweight implementation that leverages the
ADIOS shared memory buffer to reduce memory footprint.
ADIOS supports a “shared memory” writing mode, in which
a single buffer is maintained and all the user’s write calls
copy data from user buffer to this shared buffer, with the
final close call triggering the transfer of the shared buffer to
storage via a single I/O operation. As shown in Figure 5,



PARLO directly transforms the user’s data buffer into the
ADIOS shared buffer, mimicing the original data movement
such that no extra intermediate memory is required. As for the
CPU time required by buffer transformation, this is shown to
be small relative to the existing I/O time in Section IV.

It is important to note that the overhead of LO when
applied at run time is, in itself, unavoidable, as the LO would
need to be applied at some point anyway. Compared to the
traditional post-processing approach, where LO is performed
on data already written to disk, PARLO is able to save I/O
time, storage space (since in post-processing, both the original
and the copy constructed with LO should be stored until
processing is complete), and CPU resources, as demonstrated
in Section IV.

3) Run-time Value-based Binning: Our previous work [10]
applies equal-frequency binning to achieve balanced perfor-
mance when accessing different bins. This approach works
well in post-processing since the bin boundaries can be easily
sampled from existing datasets. However, it is challenging to
perform binning at run time because the data values are not
known beforehand. PARLO offers three possible approaches
to achieve efficient run-time binning without inter-process
communication, which provide a range of trade-offs to the
user: (1) Pre-defined Binning specified by the user. In this
case, bin boundaries are given and do not require calculation
by PARLO, which saves run-time resources. The limitation
of this approach is that it relies on users’ knowledge about
the value distribution of the datasets to be produced, which
is not always feasible. (2) Run-time Equal-Width Binning.
In this case, the value range (max/min) is calculated for
each PG with a single scan. Then, binning boundaries are
determined by dividing the range into a number of equal-size
intervals. This method releases PARLO from its dependency
on users’ knowledge, and has O(n) time complexity, which is
an acceptable computational overhead. The drawback is that
data with a skewed distribution may not be evenly distributed
under this scheme. (3) Run-time Equal-Frequency Binning.
This approach first sorts the data within each PG, and sets bin
boundaries such that all bins have a (roughly) equal number of
elements. This approach achieves best distribution, but requires
O(nlogn) time complexity, which may not be suitable for use
with large PGs.

It is important to note that binning induces an additional
overhead in the extra time and storage space required to
write the associated index to disk, which requires 50% of the
original size of the raw data when uncompressed. In order
to reduce this overhead, we apply Zlib compression to the
indexes. Although the trade-off is more CPU cycles spent in
compression, the reduction of index size significantly reduces
I/O time, and the overall throughput is improved. Since
binning is the major source of run-time overhead, PARLO
classifies optimization schemes based on run-time overhead.
Currently, schemes containing “V” (binning) are tagged as
high-overhead, whereas those without “V” are tagged as low-
overhead. PARLO is able to make a smart selection among
LO schemes based on the user’s requirement on run-time

performance. When the user requests a high-overhead layout
scheme, PARLO estimates whether the schemes can meet
the given performance requirement, and if not, PARLO will
choose a similar scheme with lower overhead that is able to
meet the requirement.

D. Query Support at ADIOS Read Side

PARLO provides rich query functions which are integrated
with ADIOS read APIs. Users can specify spatial constraints,
value constraints and precision requirements through the ex-
tended read APIs to answer queries over the stored data.
Queries are integrated with ADIOS by introducing a minimal
set of additional query APIs on top of the ADIOS framework.

When handling query constraints, PARLO produces a set of
seek-and-read pairs (i.e., byte segment reads) to be passed to
the ADIOS read layer to fetch the required data from storage.
First, whenever a spatial selection is posed, we intersect it
with each PG’s bounding box to create a set of smaller, PG-
local selections. Then, for each such PG, value and precision
constraints are run through PARLO to determine the byte
segment reads corresponding to the bins and/or byte-level
precision offsets to read from that PG on disk. Finally, all
byte segment reads are collected and executed at once by
the ADIOS read layer. Since PARLO improves data locality
by its storage reorganization, these reads are kept more con-
tiguous on disk than with an unoptimized layout, improving
I/O throughput. Moreover, these byte segment reads may be
automatically optimized by collective MPI-I/O [22], further
reducing I/O overhead.

PARLO supports parallel data access through ADIOS to
speed up queries. The underlying parallel access is typically
achieved via MPI and MPI-I/O. Given an access pattern with
a set of constraints, PARLO calculates the bins, blocks and
partial bytes to access, and then distributes the data access
evenly among all processes. Each MPI process fetches and
processes a subset of blocks across the bins. In general, I/O is
difficult to balance on parallel file systems, as they are shared
by many users with highly dynamic access patterns. Thus,
PARLO aims to assign an equal amount of data I/O to each
process.

IV. RESULTS
A. Experiment Setup

In order to evaluate PARLO’s performance, we conducted
experiments on the Lens cluster at Oak Ridge National Lab.
Lens is a 77 node Linux cluster dedicated to data analysis and
high-end visualization, and is connected to the main Lustre
parallel file system at ORNL. Each node is installed with four
quad-core 2.3 GHz AMD Opteron processors.

Since PARLO focuses on run-time data layout optimiza-
tion, we evaluate the performance of PARLO using an /O
simulator for a real scientific application. Specifically, we use
the I/O simulator for Pixie3D [4], a 3-dimensional extended
MHD code that solves the extended MHD equations in 3D
arbitrary geometries. The I/O simulator performs the same
I/O operations as the original application, calling the ADIOS
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Fig. 7. Query performance of 3-level LO schemes in comparison to queries
on the original ADIOS BP file without optimization.

I/0O APIs to write data to storage in the BP format. The only
difference is that random values are written to the datasets,
since the computational part of the simulator is omitted. We
compile this I/O simulator with PARLO-integrated ADIOS
and compare the run-time performance with and without
PARLO enabled to study the run-time overhead introduced.

B. Query Performance Evaluation

We first show the query performance of PARLO during
ADIOS read by comparing the query response times with and
without using the PARLO optimized layout. Figure 7 shows
the query performance comparison for queries with multiple
constraints and various selectivity combinations. For PARLO-
based schemes, fine-grained 3-level LO are applied in different
priority orders to optimize for all access patterns. An 8 GB
dataset (1024 x 1024 x 1024 3-dimensional double-precision
variable) is used for query evaluation. Chunk size is set to 64 x
64 x 64 and bin count is set to 20. Queries are generated with
fixed selectivity but random select ranges for the evaluation.

Both figures show significant performance improvements
compared to queries on original BP files. For higher selectivi-
ties, shown in Figure 7(a), the improvement is 12 to 26 times.
For lower selectivities, shown in Figure 7(b), the improvement
is 2 to 3.5 times. Thus, under lower selectivities, the layout
optimization becomes less effective, since larger portions of
data are accessed. This is expected, as it is a well-known fact
in the database community that, when accessing a large portion
of data in a database (e.g., 1%-10%), sequential read and
filtering is comparable to, or even faster than, querying using
an index [8]. Therefore, when overall selectivity is greater
than 1%, PARLO falls back to sequential read and filtering to
ensure acceptable query performance. Our previous work [10]
contains additional, detailed results and analysis of query
performance, along with comparisons to existing scientific data
management systems.

C. Run-time Layout Optimization Performance Evaluation

Next, we evaluate the run-time overhead of PARLO. We do
this by running the Pixie3D 1/O simulator for one timestep,

which produces a 3-dimensional double-precision floating-
point dataset. We use 64 processes to write the datasets, with
each process writing 8 variables. The domain of each process
is 256 x 256 x 256, yielding a data size per process of 1
GB, and a total size of 64 GB. When applying PARLO, for
schemes optimized for value-constrained access patterns (i.e.,
those containing “V”), the bin count is set to 20, and equal-
width dynamic binning is used to calculate bin boundaries at
run time. Zlib compression at compression level 1 is applied
on the binning indexes to reduce data size and I/O time. Higher
compression levels were tried but proved ineffective in further
reducing the index size, yet increased compression time by
over two times.
TABLE I

STORAGE OVERHEAD COMPARISON BETWEEN PARLO AND
POST-PROCESSING.

Original | PARLO PARLO Post-proc. | Post-proc.
no “V” W/ “V” no “V” w/ “V”
64 GB 65 GB 76 GB 129 GB 140 GB

The end-to-end data write time is measured for the Pixie3D
I/O simulator both under original ADIOS (i.e., no LO), and
under all permutations of run-time LO offered by PARLO.
The processing time of the traditional post-processing ap-
proach is also measured for each of these LO schemes, which
consists of the time to: 1) write the data to storage with the
original version of ADIOS; 2) apply equal-width binning to
get bin boundaries for fair comparison; 3) load the dataset
into memory and perform LO; and 4) write layout-optimized
data back to storage. The results are shown in Figure 8.
All bars in the graph represent the percent overhead of the
given method relative to original ADIOS with no LO applied.
Compared to post-processing, PARLO reduces processing
time by an average of 56%. Furthermore, as shown in Table I,
PARLO saves 46% to 50% storage space by writing data with
optimized layout directly to storage, avoiding the storage of
redundant intermediate data.

Another interesting results from Figure 8 is that, compared
to original ADIOS performance, non-binning LO schemes
(those without “V”) only increase write time by an average
of 3.3%, which is very little overhead. For schemes with
binning (with “V”), the overhead is somewhat greater due to
the binning indexes built at run time. These indexes start at
50% of original data size, though after zlib compression they
are reduced by 64%, thus reducing the total write size by
21% (shown in Table I). As a trade-off, an average of 4.5%
more CPU time is required due compression. In the end, the
write time for LO schemes with binning is on average 30%
greater than that of original ADIOS without LO. Considering
that this form of binning is equivalent to building and storing
a query index at run time, and given the query performance
improvement shown above, this overhead seems reasonable.

V. RELATED WORK

Enormous data size and disparity between computing ca-
pability and I/O bandwidth cause I/O to be the bottleneck
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in modern HPC systems, making exploration and analysis
on big data a challenging problem. A collection of data
layout optimization methods have been presented to improve
data access performance for queries. Data binning approaches
with various forms of indexing, including FastBit [25] and
ISABELA-QA [16], have been applied to speed up value-
constrained access patterns. SciDB [2] optimizes for spatial-
constrained access patterns with array slicing and joining, and
array division into regular/irregular chunks [21]. The applica-
tion of space-filling curves [17], for example the Hilbert curve,
to improve spatial locality when accessing multi-dimensional
scientific datasets has also been explored [12], [15], [23],
[24]. However, while these methods have been successful in
optimizing for specific query types, they do not address the
issue of heterogeneous access patterns.

A dynamic layout scheme with hybrid replications for
complex I/O patterns has been developed [20], as well as a
method of distributing workload among busy and idle servers
based on I/O cost measurement [19]. While successful in
improving I/O performance, these methods rely on knowl-
edge of specific application data access patterns. In contrast,
PARLO addresses heterogeneous access patterns induced by
a range of general query types. Unlike prior post-processing
approaches [5], [25], PARLO is integrated with parallel I/O
middleware to achieve efficient run-time in-memory layout
optimization and index building.

HPC T/O libraries are designed to work as middleware to
achieve efficient I/O for applications, and to provide portable,
metadata-rich data storage formats. PnetCDF [13], one such
popular middleware code, applies linear data layout in its
file structure so that arrays are stored either in a contiguous
or interleaved way. Another, HDF5 [7], applies a hierar-
chical group structure that offers flexibility of data layout,
including contiguous, chunked, and compact layouts. HDF5
also implements a “filter” pipeline, which allows the user to
specify run-time transformation. However, this filter pipeline
is only designed for data compression, and cannot be easily
extend to incorporate run-time transformations such as the
storage layout optimization presented in this paper. Another
common I/O middleware, ADIOS [14], has already been
described in detail previously. ADIOS supports many data
transport methods (including POSIX, MPI-10 [22], and staged
reading/writing) and output formats (including the default BP

Additional end-to-end data write time of Pixie3D 1/O simulator compared to the original performance of ADIOS without any run-time LO.

(Binary Packed), pnetCDF, and HDFS). However, in relation to
PARLO, it does not yet provide intrinsic support for run-time
data transformation, which motivates the ADIOS integration
work in this paper.

As an alternative to in situ data processing on the compute
cores, methods for moving data to a staging cluster for
processing have been explored in some detail. DataStager [1]
is a framework that moves data asynchronously from compute
nodes to staging nodes, and enables data processing methods
such as aggregation, partitioning, and validation to be run in
the staging area. PreDatA [26], an extension of DataStager,
characterizes and reorganizes application data to speed up
data analytics. Though these approaches have many benefits
in terms of reducing compute cluster load, speeding up /O,
and enabling new types of in transit analytics and processing,
they are only applicable when staging resources are available.
Because PARLO is integrated with I/O middleware, it can be
flexibly deployed at different positions along the data flow.
Because of this, PARLO can take advantage of staging cores
if available, but is also applicable using compute cores alone.

VI. CONCLUSION

In this paper, we present PARLO, a parallel run-time
layout optimization framework integrated into the ADIOS
I/O middleware, to improve the performance of queries with
heterogeneous access patterns on multi-dimensional, spatio-
temporal scientific datasets. PARLO offers users a flexible,
transparent method to achieve run-time data layout opti-
mization without modifying or re-compiling application code,
controlled with simple, XML-based configuration. Based on
this optimized data layout, PARLO also provides rich query
functions integrated into the ADIOS read API to improve the
performance of queries with heterogeneous access patterns.

Experiments show that PARLO can improve query perfor-
mance by 2 to 26 times via run-time data layout optimization
and query index build, while still maintaining a reasonable
run-time I/O overhead of between 3% and 30%. Compared to
traditional post-processing approaches, PARLO reduces the
processing time by 56% and storage overhead by up to 50%.
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